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FOREWORD

This technical report partially fulfills the reporting requirements of work conducted
under SBIR Phase II contract NAS8-39368 for Marshall Space Flight Center, National

Aeronautics end Space Administration. The work presented here was performed by
REMTECH, Inc., Huntsville, AL, and is titled, "Rarefied Gas Effects on Aerobrek-

ing/Reentry Vehicles with Wakes."

The project manager from REMTECH was Dr. Amolek C. Jein. The project was
very much aided by the technical support of the NASA Technical Monitor, Mr. Werner
K. Dehm, Chief Aerodynemicist, Structures end Dynamics Laboratory.
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ABSTRACT

The purpose of the present investigation is to understand the basic nature of the
wake flow behind an Aeroassisted Space Transfer Vehicle (ASI'V) or Aeroassisted
Flight Experiment Vehicle (AFE). The astronauts were supposed to fly in the bay of an
ASTV or AFE. This problem of thermal environment on the bay of the vehicle becomes

important to ensure the safety of the astronauts.

A computer code based on the full Navier-Stokes equations with surface slip and
temperature jump boundary conditions is developed. The governing equations are ex-
pressed in spherical-cylindrical coordinates and a third order accurate upwind-biased
scheme with provision to use a second order accurate central-difference scheme of
numerical integration, is used. To ensure a high order of accuracy, complete flowfield
from the stagnation line to the wake flow is computed. For this purpose, the computer
code is divided into three parts, viz., stagnation part, forepart and aftpart and has the
provision to converge each part to provide boundary conditions to the next part or we

can compute the entire flow in each iteration.

Extensive numerical computations have been carried out for a number of prescribed
conditions, but for the sake of brevity, the results of computations for SR3 tunnel condi-
tions of CNRS, France, are reported here. Computations have been carried out on a

cylindrical body with a spherical nose (also called sphere-cylinder body) and on a hemi-
sphere with a cylindrical bay with radius equal to a quarter of the radius of the base of
hemisphere, to simulate a generic AFE configuration. Comparison of the results on
sphere-cylinder and on the generic AFE body helps us to understand the rarefaction
effects and the effect of wake flow on the main flowfield. Comparison with the DSMC
data from NASA LaRC indicates general agreement about the nature of wake, but our
results differ quantitatively with the DSMC results. At the present moment, the results
from the CNRS tunnel are not available. As such, a quantitative comparison of the pre-
sent results with the experimental data is not possible.

In general, it is found that the wake on a generic AFE is a slow moving, high tem-
perature, low density and, consequently, low pressure fluid.
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NOMENCLATURE

Velocity component in the direction of e-increasing for spherical coordi-

nate system and in the direction of z-increasing for cylindrical coordinate

system.

Velocity component in the radial direction

Velocity at the top of Knudsen layer

Pressure, density and temperature, respectively.

Total temperature

Dimensionless wall temperature = T,, / To=,

Temperature at the top of Knudsen layer

Spherical-polar coordinates of a point P in Fig. 6.1 b

Cylindrical coordinates of a point (2 in Fig. 6.1b

Represents the body of revolution and defined by Eqs. (6-2) in spherical

coordinate system and (6.4) in cylindrical coordinate system

Represents the outer edge of the domain of integration and defined by

Eqs. (6.1) and (6.3)

Nose radius of curvature

Merged layer thickness = re - rB

Transformed variables in spherical coordinates defined by Eq. (2.10)

Transformed variables in cylindrical coordinate system and defined by

Eq. (4.10)

= rB +"q " ne

_ne
_B + for spherical coordinate system=
O_rB + ane

= 3--_ r/--_- for cylindrical coordinate system

_O2rs+ o32ne

- ae 2 r/-_- for spherical coordinate system

a2rB+ a2ne
= _ T/a-_ for cylindrical coordinate system

Coordinates in the computational plane for the forepart of the body and
defined by Eq. (2.16)
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Specific heat at constant pressure

Specific heat at constant volume

Ratio of specific heats = c_c v
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] ]
- t

2 (r-1)M 

Viscosity coefficient

Thermal conductivity

Prandtl Number- pce
k

Reynolds number based upon total temperature = p=.uo.rN I-fi(To= )

Momentum and thermal accommodation coefficients

Heat transfer for unit area to the wall (=k__---, n being normal to the wail)

= Heat transfer coefficient = O/ p==u_

= Skin friction per unit area at the wall

=Skin friction coefficient = z"/({p.ou 2)

= Pressure coefficient = (p-p= p=u_

Semi-major and semi-minor axis of the conic section

Focal distance from the center of conic section

Eccentricity = c/a

Eccentricities of the conic sections generating the body of revolution and

outer edge of the domain of integration

a], a2 Nose radii of curvature of the conic sections generating the body of revo-

lution and the outer edge of the domain of integration

Uo, %, Pc, To, Pc, P2 Defined by Eq. (3.8)

Subscripts and Superscripts
u

Bar over a quantity represents the dimensional value of the variable
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Section 1

INTRODUCTION

1.1 Statement of Problem

The purpose of this investigation is to understand the structure of the wake of an
aeroassisted flight type vehicle when it reenters the atmosphere . The aeroassisted
vehicles were supposed to traverse the upper atmosphere for a sustained period of
time. These vehicles were called Aeroassisted Space Transfer Vehicle (ASTV) and also
Aeroassisted Flight Experiment (AFE) Vehicle. The generic shape of an AFE essentially
consists of a hemisphere with a cylindrical bay. The problem is extremely important
from the point of view of understanding the basic nature of wake under rarefied condi-
tions. Particularly important is the question as to when the wake is formed and how it
grows with reduced rarefaction. Also, the AFE was supposed to fly with human beings
in the bay of the vehicle. As such, it was important to know the thermal environment of
the vehicle so as to ensure the safety of the astronauts. In view of the importance of the
problem, Working Group 18 of the international organization AGARD of NATO has
taken this problem as one of the prime problems for investigation by the international
scientific community. Some of the organizations that are participating to solve the
problem of wake through experimental and theoretical procedures are the following:

1. NASA Langley Research Center

2. NASA Marshall Space Center

3. CNRS, Meudon, France

4. DLR Gottingen, Germany

5. DRA Farnborough

6. Imperial College, UK

Working Group 18 had several meetings and the efforts are still continuing to re-
solve the problem.

In the present investigation, we decided to compute the complete flow field including
wakes on a generic AFE type configuration so that the upstream effects if any can be
detected. A highly accurate, fastly converging computer code based upon the full Na-
vier-Stokes equations with surface slip and temperature jump boundary conditions is
developed. The code uses a third order accurate upwind biased numerical scheme with
provision to use second order accurate central-difference scheme of numerical integra-
tion near the boundary points of the domain of integration. Other salient features of the
code are the following:

1. The code uses the Navier-Stokes equations in spherical coordinate system to
compute the forepart flow and cylindrical coordinate system to compute the aft
part flow. In this procedure, the singularity that often arises in the body oriented
coordinate system at the sharp corner of the sphere is not present. In the body
oriented coordinate system, the corner of the hemisphere has an infinite number
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of normals and as such cannot be uniquely solved. In our approach, the flow at
the corner can be uniquely determined.

2. The computer code is divided into the three parts:

a. STAG PART: Here, special solution of stagnation line flow have been ob-
tained with a view to provide accurate description of the stagnation line
flow and to provide one of the boundary conditions to compute the flow
downstream [1,2].

b. FORE PART: Here, the Navier-Stokes equations in spherical coordinate
system are computed using a central-difference scheme of numerical
computation. As we do not expect any separation of the flow on the fore
part of the body, the central-difference scheme is found adequate for our

purposes.

c. AFT PART: Here, the Navier-Stokes equations in cylindrical coordinate
system are computed using a third-order accurate upwind biased scheme
to compute the main flow and a second-order central-difference scheme
to compute the flow adjacent to the boundary.

The code is so developed that each part converges and provides boundary condi-
tions to compute the next part or we can compute the complete flowfield in each itera-
tion. Various grid generation schemes i.e. algebraic (exponential and trapezoidal) and
adaptive are incorporated to give the much needed flexibility of resolving the flow. In
most of the cases, the computations converge in less than 1000 iterations and it takes
less than three hours of CPU time on SUN work station of REMTECH, Inc.

In the present report, computations have been carried out under experimental con-

ditions of SR3 low-density tunnel at Centre National da la Recherche Scientific (CNRS),
Meudon, France. The computations have been carried out on a cylindrical surface with
a hemispherical nose (called sphere-cylinder in this report) and on a hemisphere with a
cylindrical bay with radius of the cylinder equal to a quarter of the radius of the base of
hemisphere. In this way, we can understand the basic features of the flowfield on
sphere-cylinder under rarefied conditions and find out the effect of dropping the cylin-
drical surface to a quarter of the size of the radius of the base of hemisphere on the
main flowfield. Besides the thermal environment of the complete vehicle can be com-
puted with reasonable accuracy.

In Chapters 2, 3 and 4, the basic mathematical formulation is described in brief. In
Chapter 5, a description of numerical scheme is given. In Chapter 6, grid generation
procedure is described .In Chapter 7, the development of initial conditions is presented.
In Chapter 8, the Successive Accelerating Replacement Method of numerically integrat-
ing the finite-difference form of the governing equations is given. In Chapter 9, discus-
sion of the results is presented followed by conclusion.
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1.1 Review of Relevant Literature

In 1990, Jain and Dahm [3] investigated the wake flows on blunt bodies described
as sphere and sphere-cone under hypersonic rarefied conditions. The flow was pre-
dicted on the basis of the full Navier-Stokes equations with surface slip and tempera-
ture jump boundary conditions. They found that on a spherical surface, separation of

the fluid takes place at the denser end of the transitional regime. Using DSMC calcula-
tions, Brewer[4] and Dogra et al. [5] investigated the wake structure on a sphere and
found that under prescribed conditions similar to those used in Ref. [3], there is no flow
separation. They attributed this discrepancy to the inaccuracy of the Navier-Stokes
equations to predict flow in the wake where the flow is very rarefied. In Refs. [6-9],
Moss et al., computed the flow on a 70 degree blunted cone with a round corner and
having a cylindrical bay, under three test conditions at SR3 tunnel of CNRS, France,
using DSMC particulate method developed by Bird and the Navier-Stokes continuum
method described by LAURA code. They compared the results from the particulate
and continuum approaches on the 70 degree blunted cone for Knudsen numbers (Ku.
No.) ranging from .03 to .001. They found that for Kn. No. = .03, DSMC method predicts
a small vortex on the sting while LAURA code predicts no separation [Fig. 16(A) of Ref.
6]. From the above discussion, it is clear that there are significant quantitative differ-

ences in the predictions of the flowfield based upon the particulate and continuum ap-
proaches. Qualitatively, the behavior of the flow quantities from the predictions of the
particulate and continuum approaches is very similar.

At the present moment, extensive numerical experiments on 70 degree blunted
cone are taking place at Imperial College, London, CNRS, France, and DFL, Germany.
It is expected that the results of these experiments will be available soon and help us to
decide the degree of accuracy of different approaches to predict wake flows behind
blunt bodies.

In Ref. [4], Brewer computed the flow with DSMC method on an ASTV type configu-
ration. Essentially, his body consisted of a hemisphere with and without a cylindrical
bay. He computed flow under flight conditions for Kn. No. = .0104, .0302, .1180, .6548.
He found that a hemisphere with a sting forms a closed wake in the entire transitional
regime while a hemisphere without a sting has attached flow right up to the continuum
limit of the transitional regime. In particular, Brewer showed in Fig. 12 of Ref. [6], the
completely attached flow on the after part of the hemisphere without a sting, for Knud-
sen No. = .0302.

In Ref. [7], Dogra et al., also computed the wake flow on a 70 degree blunted cone
with and without sting, under wind tunnel conditions for Kn. No. = .0317, .0107 and
.0012. They found that the flow on a hemisphere without a sting separates for Kn. No.
= .0107 and .0012, while the flow remains attached at Kn. No. = .0317.

For the case of hemisphere with a sting, Fig. 10 of Ref. [4] shows that the separated
vortex extends up to x/d = .15 under flight conditions of Kn. No. = .0302, while Fig. 6 of
Ref. [6] indicates that the length of the vortex is much smaller, viz., x/d < .05 under wind
tunnel conditions and Kn. No. = .0317. In Ref. [4], hemisphere corner is sharp, which
ought to increase slightly (about 15 percent, Ref. [7]) the size of the vortex. Since am-

3
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bient temperatures in the computations are not exactly the same in Refs. [4] and [6], it
is difficult to draw any conclusions about the accuracy of these computations. How-
ever, there seems to be substantial differences in the prediction of DSMC results from
various places.

4
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Section 2

GOVERNING EQUATIONS OF MOTION IN SPHERICAL COORDINATE

SYSTEM

The non-dimensional forms of the steady state Navier-Stokes equations in spheri-
cal-polar coordinates with axial symmetry are the,following:

Continuity Equation

(pv) r + 2pv +(PU)o + pucot8 =0 (2.1)
r r r

Tangential Momentum Equation

P__O+ Pr Vur +Uue +r

_ 2Reo rl[_(Uo+V)-_r (rvr+2v

+_e°{/_[r(u)r +-_]r

1

+ u O + u cot O)]O

+ 3/1 Jr(U/ +-_]
r L \r)r

2#
+--_cotO[uo-u cotO] }

(2.2)

Radial Momentum Equation

Pr +P VVr +uVe
r r

2 [ _r(r +2V+Uo+ cote) 1-'-R_¢o /2Pr-- Vr U
r

I I{[(_)II
+_- pr +vo

Reo r r r JJo

4 2vr
Re0 r

-_ cotO + - v + u cot 0
Reo r r r

(2.3)

5
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Energy Equation

.1.{. .co.o.}+Urr+
Re0Gr \ r )0 r

__(Uo +V)2 2 + rr(u ) 1 2+_(v+u cot0)2leo L trir +r vO

u 221 IX {rv r+2v+ucotO+ 0}
3 r 2 Re o

Equation of State

p= 7-1A p T
Y

Boundary Conditions

1. At the edge of the ML, r = re

u = sin0, v = -cos0

1 1

T=I 2A' P=yM_

p'-I,

2. At the surface, r = rB

us =A IJr-- q

Re o p r=rB
1 y I 1 p x(d/')
5 y-1 G Reo pT -_ r=rB

Creeping Term

where

M= #
"Is =Tw+B

oRe0 p

A =_-2_- . 2-atX

B=_- 2-Oo
27

y+l

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

6
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Here a and e are the momentum and thermal accommodation coefficients. In the

computations, a = 1 and e = 1 are taken. (r, e) represent the coordinates of a point, "r"

being the radial distance, and "e" the vectorial angle. The symbols "u" and "v" repre-

sent the velocity components in e- and r-increasing directions, respectively. Other
symbols have their usual meanings. An independent variable appearing as a subscript
to a quantity represents the derivative of the quantity with respect to the independent
variable.

In the expression for slip velocity, Eq. (2.7), an additional term called the creeping
term is taken.

Variables are non-dimensionalized as follows:

D

U U
U=_, O =_,

T /.t
T= _----, It=

to.
1 1

A=-4
2 (r-llM =

p -p
P= E2=, P=-----,-_== p=

T p=_uo=rN
r = --, Reo - (2.9)

where a bar over a variable represents its dimensional value and F_vis the nose radius

of curvature of the body.

The curved boundaries formed by the body surface and the outer edge of the
merged layer are transformed to straight boundaries by the following transformation:

r-rB(O)
17- (o<-17<-0,

re(O)-rB(O)

0=0

The governing equations (2.1) to (2.5) in (11,0)-plane become the following"

Continuity Equation

Op Op

RI "_o + R2 -'_-ff+ R3 p = O

where

(2.10)

(2.11)

c )he

U
R2=--

c

_----+ ÷ ucot0
t73= ne o317 c c030 nec0317

7
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where

ne = ra -r e

c = rB + fine

c" = r_ + rl ne"

c" = rff + rl ne"

and

, a
_m

ao

Normal Momentum Equation

02v . 82v . 32v _gv 3v

A,_-_-+A2_--_--_+_ _-_-+_,_+ A5_+ A_v+A_=o
where

AI = .tt 1 F4+(c"] 2]

Roo j
2/t c'

A2 __

Reo nec 2

bt 1

A3-Re 0 c 2

A4 = /.t 1 1 (lo_/.t 2ne'_ c" 'nee

-P _e ne

It 1 ( 10l.t c_" 1 c9#) p_uAS-Re0 2 cot0-1 /_ _ ne /_ _ c

&=
Reo3 c /z Or/

tg/t 1 o_,u cot0_c"+ 2ne'.)'[

3rl It 30 c" ne )JIt

(2.12)

8
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I c" 1 `9# ne"
1 p 1 c' `92u 1 d2u ÷ 1 c' 1 `gbt+7__+ 3= -- ..}.

A7 3 Reo c ne 2 002 ne 0710 -_e ne I.t `grl c _--_---ff+cot0---ne

[2, a,+:Tj.raui+r, la,(_2_oto+3_]-7_=°k_JL_e ,9, ---3' a" _]-_el.t 8_7 p c /x ,90

.p 2 1+
ne

Tangential Momentum Equation

,92U ,92U +n 3 ,92u ,gu ,gu8x_-6r+__-_ _-_r+8,_+B5_+86u+_ =o
where

BI_ / 2 1 [1+4(c"_2]

VL :t-c) j
8 # c' 1

3Rcoc 2 ne

4 It 1

3 Reo C2

_ g { 4 c' r 1 a_, c" 2ne' ]+ 1 r1+4(c'_2]1 `9#+ 2 lB4-R'_eo ' 3 nec2L-#'-_÷c ' ne +cot0 neZk 3kc) j_ "--_'d

-P ne ne.c_l

bt 4 1 [_`9# c' l`gg+cot0] puB5 = Re o 3 C 2 `90 ne l.t o31"1 c

B6_ bt 2 lr(1,9_ c" l__)cot0+2cosec20 ]- ao--;'-_TLC__o ne #

__}

(2.13)

9
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1 1 c' _2v 1 1 1 c_2v + 1 1(8 ne 1 _?#_0v....... +-'-NJ_8_=_o _ ,,e__'_ n__ _©0 _;_5 _

1 c" 1 o_i2 _ (ne'.c+8ne.c')
ne 2 c 11077 3 c 12 O0

+2 1[1 _# c" 1 O#v _

:-_L; c?o ne Ix o317 ne

Energy Equation

ol2T + o_2T 02T o3T +C 5 __0 +C6T +C7 =0q _ c__-_+c_ _r+c,_
where

Cl=Re----g"a _- +

A 12 1 c"
C2=-2 ...... _o_

Reo G ne c2

A 12 1
G=

Reo G c2

A 12 , 1 {2. 1 o')# c.[ fc' 2l,+ c'._'+@/c,=Ro° o ne_ -;'_ --/
_,c) j c

A 1 _.2I _ o_/J, c' 1 o_# t.cot0]_Ap__(25=Reo a "O0 ne12 077 c

C6 =0.0

C7=Re 0 ne2 COr#) +-c-ff _-_

+,,_ c c kOO ne 3 c=

Equation of State

(2.14)

l °_la+2ne' -cotO)l--_(v-u_)
12 olO ne )j

2

_--N+2o+u_oto+ -_

p=7-1Ap T
7

ne

(2.15)

10
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For ease of computation, the governing equations (2.11) to (2.15) are transformed
from (11,0)-plane to the computational (i;, ¢)-plane by the following relations:

_"=_'(q,8) (2.16)

For the general case, equivalent derivatives in (11,{})-plane and (G (I))-plane are the fol-
lowing:

First Order Derivatives

°Y=G a_+¢. °Y

where the metric coefficients are given by

Second Order Derivatives

-7' ;'°= J

_ 8_ _ T/;,
¢" --T' Ce- T

(2.17a)

(2.17b)

a=f- = a=f + r a a=f +¢= a=f +

a=f r2 a2f a2f + ¢2oa2/ __+ ¢,. oy_o_ "+ 2¢0¢0 +_'ee (2.18b)

oarlaO°_2/=_'77_'e_°_2/+ (_'_¢0) _gTg7_--72-.°32/ °_2f + r oy + ,,, 8f (2.1 8C)

Here, the second order metric coefficients in (TI, 0J-plane are related to the metric coef-
ficients in (_, ¢)-plane by the following relations:

11
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1 2

1 2

:.: __ {,,o0(o_,,_o,,_)+o_,_(o_,,_o,,_/+(o_,,+o,,:)(,_,o,_,,o_,)}

These expressions help us express the derivatives of a function with respect to 1"1
and 0 in terms of the derivatives of the function with respect to i; and _p.

The governing equations (2.11) to (2.15) in the computational plane defined by
equations (2.16) are the following:

Continuity Equation

where

and

_¢. P:_+ P3P=°

_=_

Normal Momentum Equation

_2v _2v d2v _ _v

_F+_ _-_+_-+_,_+_,_+_+_ =o

(2.20)

(2.21)

(2.19)

12
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where

a 1 = AI_ _ + A2_n_O + A3_ _

a2 = 2A1_r1_O + A2(_qdPO + _OCq) + 2A3_or_o

O_3 = mldd_ + m2r_rldpO + A3dP_

a 4 = Alarm + m2_oe + A3_ee + A4_rl + as_ 0

ot5 = Alddqn + A2¢rtO + A3r_oo + A4ddn + Asr_0

0¢6 = A 6

o_7=A 7

Tangential Momentum Equation:

,92u _ _92u .. ,92u 3u

where

Energy Equation:

,02=2&G¢, + th(4",g,e+_e_,)+ 2z_ qo_o

,B4 = B1 _'r/r/+ B2_'OO + B3 _'00 + B4 fr/+ B5_'O

1_6 = B6

,87=z7

o_2T o_2T o_2T BT BT

(2.22)

(2.23)

13
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where

Equation of State:

r_=q;_, +c=G;e +c3;_

r== 2qGc. +c=(G¢o+G¢.)+ 2q;eCe

r3 =q¢2 +c=¢,/_o+c3¢,_

r4 = q_',7.+c=Go +GGo+c4G +GG

r5 =q_,, + c=¢.7o+q¢oo +G¢, +G¢o

76 =c6

77 =C_

The boundary conditions become:

pT

, At the edge of the domain of interaction, _ = 1, viz.,

u= sin0,

1
p=l, T=I-_

2A

1
p=_

7/I/oo2

2. At the surface, i; = 0

U = -- COS(_

(2.24)

(2.25)

u, = ..... (2.26a)
a _0 p he&7 c 45 -1 _ I_0 ne

and

+./-_ 2-0 2y 1 M= /1 T/-_"./1 _.)r.=r_ 1/-2-'--g-"r+l a R¢o pV'Tt..-e (2.26b)

The first order derivatives in the normal and tangential directions in (rl,O)-plane are

converted to the computational _, _)-plane from the relationships defined in Eq. (2.17).

Calculations have been carried out to accommodate situations where grid distribu-

tion in TI-direction on each radial line differs from the other. In other words, the grids
along each radial line do not depend upon O-direction. In this case, the following sim-

plified transformation from (q, O)-plane to the computational _, _)-plane is adequate:

_"= _'(r/) (2.27a)

¢=¢(0) (2.27b)

14
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Under such conditions,

and

_,7 = O, _'o = O, _'no = O, _no = 0

Here,

1 1

_'n =_r/_.' _° =_¢

_nn rt¢¢ o_
= 3 ' _00 = 03

_ no = O, C_no = 0

c)f 1_
u_m

o_f= 1 o_"

ao o¢a¢

oy _ oy

o_2f 1 oy O# c_

a__ O_o__ o_o_
a2f 1 a2f

and the governing equations are reduced to the following form:

Continuity Equation:

nap+ ap
a_ P=_ +P3p=°

where

1

Pl =_-RI

P2 = _¢ R2

P3=R3

(2.28)

(2.29)

(2.30)

15
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Radial Momentum Equation:

1
O_1 =-- A1,

A 4 T/_'_'A1
_4 =

O_6=A 6 ,

Tangential Momentum Equation:

where

02u 02u 02u Ou Ou

"_ + _6 u + _7 0/_1 _-'+ _2 0"_-_ +/_3 "_2 "+ ]_4"_ + _5 =

Energy Equation"

T/CCB1, 05 B5 0#

/_6=B6, 07=

where

_2 T 02T o_2T 037, oT/"

_'1 -_---_-_+0___'2 ----_- + r 3 -_2-- + It, --g-ff_+O¢__5"_ "+ _t6T + Y7 =0

Equation of State:

C1 G C3
71 = ""_, 72 = --, 73 = --

r/¢0¢ 0_

c, _n__.q c5 o_

76 =C6, 77 =6'7

p=y-lAp T
7

Boundary Conditions:

1. At the outer edge of the ML, _ = 1

(2.31)

(2.32)

(2.33)

(2.34)

16
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2. At the surface, ( = 0.

u = sin 0, V = - cos

1 1

7=1 2A' P=_'YM_

p= 1,

(2.35)

KS _ m

5 y-1 o" Reo pT o_ ner/(

Creeping Term

(2.36)

T = Tw + 2-0 2 Y 1 Mr= 11 1 1 (2.37)

We notice that for a monoatomic gas, 7 = 1.67, _ = .67, the coefficient in the creep-

1 Y 1 3 the same as derived by Maxwell.
ing term, 5 7 - 1 o- = 4'

17
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Section 3

STAGNATION LINE SOLUTION

Stagnation line solution provides one of the boundary conditions to solve numeri-
cally the full steady-state Navier-Stokes equations for predicting flowfield on a body
surface. They also provide an accurate description of the flowfield and surface quanti-
ties in the stagnation region of the body.

Here, calculations have been carried out for a general body of revolution described
below.

Let the body surface be represented by revolving the conic section

a

FB= 1+ ecose (3.1)

about its major axis. Here, _e is the radius vector of any point on the body from the fo-

cus of the conic section; e is the angle that the radius vector makes with the incoming

stream; a is the radius of curvature at the nose (0 = O) of the body and e is the eccen-
tricity of the conic section.

In the non-dimensional form, the Eq. (3.1) can be written as

TB _ 1 (3.2)
rB = -'a- - l+ecose

e = O, for a sphere.
< 1, for an ellipse.
= 1, for a parabola.
> 1, for a hyperbola.

Equation (3.1) is expanded in ascending power of 0 as follows:

1 + e 02+ e I e 6]04+...rB= 1+_,,_£e 2(l+e) 2 4(l+e) 2 l+e
0 order _ "

first order second order

(3.3)

which is valid for all values of 'e' in the neighborhood of the stagnation line. It has been
found that even the first order approximation with terms up to 0 (0 2) approximates rea-
sonably well the body surface near the stagnation line.

Let the body surface be represented as:

rB(O) = al
l+elcos8'

and the outer edge of the merged layer (ML) as:

(3.4)

r,(e)= o.2
l+e2cose

(3.5)

18
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Then, the ML thickness is:

,,_(O)=re(O)- rB(O)

= (_1 + C¢202 + ""'
(3.6)

where

O_1 = G2 al
l+e 2 l+e 1

a=-=[(i+e2)2 (l+eil2J'

Using the transformation,

r -rB(o)
rt=

re(o)- rB(o)

r - rB(o)

ne(O) '

the radial distance of any point in the ML from the focus of the conic section is:

r=rB(O)+n,,,(O) (o<_n<_l)

= _1 +_2 02 +_4 04 +",
(3.7)

where

/31= +/7 1+e2 1+el ,

!I _ _¢o_e_ a,,_
_=-=L0+e,)=+'t(Cg)=(1;;,),'

_,.j-.(el:)+_r ,) ,,.e,(,,n4--4[(1+el) 2 "l+e 1 "L(I+.=)_ l+e 2 6 (1+el) 2 l+e i "

Local similar solutions of the NS equations are obtained by assuming the following
form of the primitive variables:

u = Uo(n) sin O, v = Vo(0)coso,

p =po(_), r =to(n),

p = po(rl) + p2(T/)sin 2 0

(3.8)

19
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1 1 d

al_ aC(p°v°)_

Tangential Momentum Equation

Substituting Eq. (3.8) in the governing equations and boundary conditions and collect-

ing various order terms, we get the set of equations, valid in the stagnation region of

the body. Using the transformation given in Eq. (2.16), we get the following set of

equations for the stagnation region flow:

Continuity Equation

2p°(u°+u°)=O. (3.9)

&

1duo l.poUo(Uo +Vo)1. 2___Vp2(()

ncdC PI /_IL

[32fl2 2 I l 1 dl_ol 1 l du o

1 1 I2fl2 ;_ "d_'2 r/_. d--_'J4 3 alfll L al

_ _ _on__ J__J

(3.1o)

Normal Momentum Equation for Po(_):

1 r i d2vo _ dv o

al 7?C

=3ReO[po__U o 1 duo + 1 1 dPo.]

4 #o L al ncdC a_ nc dCJ

[1 1 1 d_o 2 3_2] 1 1 dvo-_1 ;o _ _1 _ __

1 1+ "_11 + _1

1 1 1

2 alfl 1 T/C

1 1 dPo

#o 71Cd_

du o

dC

%+%

(3.11)

20
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Energy Equation

A_ poVodr. _ Vo4S_o
÷

a 1 rl¢ d_ a 1 TIc d_

=0.

Equation Determining P2(_):

rr _

3 Reolla2poOo+2fl2u[ 1 1 do o
4 /-to 5/JLLal fl---_-o dl 17_ d_ I- fll

4 2 aiTI _ d_oq rl_ d_ d_ + P°v° "

=2T]_ t i_2 0_1 Jt d_2 "C dc )

-[ 1 ( 2_x-_-2-3'/72"_ 1 1 d#°-_1( a2 -_)

1 r 1 ¢a 2 , 5 fl2l 1 dPo+7&],,, + ,

00%(00+Uo)

(Continued on next page)

(3.12)

(3.13)
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Equation Determining P2(_) (Concluded)

_1_1

f

1 /2a2_6f12+ #2 1

=0.

Equation of State

7 1
Po = -" A PoTo. (3.14)

7

Boundary Conditions

1. At the outer edge, i_ = _e

uo(Ce)=l, Vo(Ce)=-l, po(Ce)=l, (3.15)

To(c,)=1-!
2A

2. On the surface, _ = 0

1

po(Ce)= ,tM2 , p2(Ce)=O. (3.16)

F( '_, .Uo.o)Us = . -- (3.17)

v,= o (3.18)

r,=rw+ 2 o 2r M_ uo 1 1 .

The equations (3.9) to (3.14) along with the boundary conditions (3.15) to (3.19) are
integrated by the Successive Accelerated Replacement (SAR) method of numerical in-

tegration, under a wide variety of prescribed conditions and on bodies of different geo-

metrical shapes. The findings of this investigation are reported in Refs. [1,2].
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Section 4

GOVERNING EQUATIONS OF MOTION IN CYLINDRICAL COORDINATE

SYSTEM

The non-dimensional form of the Navier-Stokes equations in cylindrical coordinates
with axial symmetry are the following:

Continuity Equation

ff--_(pv) +-_z (pu) = O (4.1)

Radial Momentum Equation

p(V__rr +. Ov'] °_P, 1 [_7['2 (2 0v:--Srr" 1o--l_r

Axial Momentum Equation

3z

o F lo_. a.q. 2uFa.

Energy Equation

a.+ a.) -_+-ff;;_o 7_, 2_p o_ a=)

+;NL 'rCg+ 

(4.2)

(4.3)

3T 1 3p

PCPt, -g7 a_]

+_l ._2__..
A Reo

where

1 1

R¢o o"
(4.4)

Equation of State

+

p=y-lAp T
7

(4.5)
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Here

1 1 1
A=--_

2 (y-I)M 2

and the variables are non-dimensionalized as follows:

T y
r= m , z=m

_N _N
F E

V----_) U=--

p= o=K
T #

T=_, #=_to.

(4.6)

where a bar over a variable denotes its non-dimensional value; subscript oo denotes

free-stream quantity, and subscript o 0o denotes free-stream stagnation conditions.
Other variables are defined in the list of nomenclature.

The non-dimensional numbers are defined as follows:

Stagnation Reynolds number =

_oo Cpo °
Prandtl number =

z.

Boundary Conditions

1. At the outer edge of the domain of integration:

u=l.0

v=O.O

1

P=TM _

,

p_ U,_ r N

(4.7)

p= 1.0

1
T=I---

2A

On the cylindrical portion of the body, surface slip and temperature jump condi-
tions are:
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a Reo p _r -1 Reo pT _z

creeping term

(4.8a)

O 7+I a R¢O p It T _._r)

3. On the base of hemisphere, the slip and temperature jump conditions are:

(4.8b)

a Reo p o_z I- 7-1 R¢o pT
Y

creeping term

(4.9a)

Ts=Tw+ # 2-0 2 7 1 M.. # TfTfT_=.OT
0 7+1 _ Reo p _ T o_z

(4.9b)

r
_" r = re

V

SPHERICAL
COORDINATE rB

SYSTEM

V

o!
CYLINDRICAL

COORDINATE SYSTEM

_u

(r, z)

_z

Figure 4.1a: Physical Plane

Physical domain bounded by r = rB and r = re with unequal grids is transformed to a

rectangular domain with unequal grids through the transformation

r-r_
r/=_, 0<77<1 (4.10)

r_ - rs

_=Z
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Figure 4.1b: Computational Plane in (_, _) Coordinate System

We notice from Eq. (4.10) that the grid points are allowed to change along the radial

lines only. This approach minimizes the numerical error as the grid points are orderly

placed. Distribution of grids in the radial direction is provided by algebraic, elliptic
and/or adaptive grid generation procedures.

Using the transformation of independent variables in Eq. (4.10), from (r, z) to (q, _)

and the following relationships between the derivatives in the two planes, the governing

equations (4.1) to (4.5) are transformed from (r, z) to (q, _)-plane.

Let

ne(z) = rB(z ) - re(z) (4.1 1)
ne' = r_ - r"e

where

o_z

r = rB + rl.ne

<9 1 _9

o_r ne o3rl

_ r_+rl.ne"

cgz _9_ ne _rl

_2 1 <9

26



_=:_--'r,,_--r'- _" c _ RTR 249-01

,92 032 (r_ + 17"ne' 12 o_2 r[_+ 77. ne' v32
-_z2 = "ff_r- _, ne : .--_- 2 ne o3rlo3;

: [_+_"e': : : ne'_ to3zo3r ne 2 o3172 ne 0317o3¢ +_ . ne 2

The governing equations (4.1) to (4.5) in (1l, _')-plane become the following:

Continuity Equation

ap ap+R_p=o
&-_+R= a;

where we represent

c = rB + TI. ne

c'= r_ + rl.ne'

c" = r_"+ rl.ne"

and

V Cp

ne ne

e2 =u

and

R3=_+-+ c ne _grl

Radial Momentum Equation

32v o3v o3v

+A4_+A5 +A6v+AT=O_ + A3 "_-- "_"

where

A,=.+o(;+:)1ne 2

2p c"
&=

Re o ne

A3= #
Reo

A4=_{ p(uc'-O)+ I--LIIJ('2c'-'-'_'ReOL \ ne ne _grl c -_j_

(4.12)

(4.13)
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1 3,u c'

A 5 = -pu + _ ne

lo, 1 0#+2m6= -c -_ ge-_ c

. :u ne"l a 1
m7= ne_ 3Re0 -_e 2 _02 "1 _ze ---_ _-\3-_ ne "_ ne ) _ _ 2ne _--_ J

Tangential Momentum Equation

02u 32u _92u ,gu _gu

+ n4-_+ B 5 B6u+B 7 =0Bx -_-_2--I-B2 __ -I-B3 "_" _'_q"

where

I ._....____.¢4c,2 +11BI = ne''_ Reo \3

2 p c'

3 Reo ne

4 /x

_=_"R¢o

B4= p ( c" u - V ) + -_ # " -_ _, _ee

4 1 (c9__ c'o3__13 Reo ne
B 5 = -pu -t

B 6 =0

1 1
BT= + Iz ,92u (3 0# # _ ,gv

Energy Equation

32T _ o_2T t92T tgT + c5 3T
CI--_i-+C'2 a-'_+C3 "_+C4"ff"_ "ff'_+C6T +C7 =0

(4.14)

(4.15)
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where

A 1 /J%(1 + c '2)
°_

Re o o" ne 2

2A l./Zcpc'C:=
Reo o"

A 1

C3 = Reo o" _%

ne

I{AI[ >]c,--3 _o _, _c. + --.e c" + .e _-(_c.)-c_(_c.

(v- c'u)_
_hpCp

J

C5- Reo o" l'tCP-_

C6 =0.0

= #-A-.¢+(v-¢'u)
C7 Reo

lzcp - Apcpu
ne

and

Equation of State

Ov c' Ov+±_]2+ _ neoarl neo_TlJ

2

3 =_e='=_+==C+ ne

7-1
p=_ApT (4.16)

7

For ease of computation, the governing equations (4.12) to (4.16) in (11, z)-plane

with unequal grids are transformed to the computational (y,x)-plane with equal grids

through the use of the following transformation:

y = y(r/,_) (4.17)

==x(o,¢)
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---_X

Figure 4.1c: (y,x)-Plane with Equal Grids

Final form of the Navier-Stokes equations and slip and temperature jump boundary
conditions in the computational (y,x)-plane are exactly the same as given by equations
(2.20) to (2.24). However, using a particular form of the transformation given in
Eq. (2.27), we get the following set of equations. The continuity equation (4.12) be-
comes:

where

p_--_-+ p2 _---P+ p3 p=0 (4.18)

_=I.R 1
r/y

t

P3=R3

Radial momentum equation (4.13) becomes:

where

_2V _2V _2V O_V 07V

_,_-r+_ _-_+_ j +,,,_+_+ _6v+_7=0 (4.19)

_ At ,42 &
a 1-_---_- , _Z2= , a 3=

& u.A_ & q=A3
£Z4 -- 3 ' a5 = '

G 6 = .46, Of,7 = A 7
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Axial momentum equation (4.14) becomes:

where

o_2. o32U o_2u O3U o3u+

_,_-y+_-_+_-x +_'_ +_ _x _,.+_7:o

_BI B_fll - _, f12=" , /33=
,7, ,Ty;x

/_'=,7, ,7, _ ;, '
f16= B6, f17=

The energy equation (4.15) becomes:

02T
+ d2T °_2T °37" _ + y6 T = 0

rl-_ r_-_+r_--j+r,_+r, o= +r7 (4.20)

where

Cl c_
Yl = _-'_-, Y2 - (=r/y 'r/y

r4 c4 Oyr c5 (=c3= 3 C1, _Y5= 3
17y Tly (x (x

76 = 6"6, 77 = 6"7

Surface slip and temperature jump boundary conditions in (y, x)-plane assume the
following form:

1. On the cargo bay

._72-aM**g_-_- 1 1 _Uslip = -_ Re o p ne 11y _ t-

(4.21a)

5y-1 cr Re o pT o3c ne fly

Tslip=TW+_-_ 2-0 (_y 1] M= /.t _ 1 o_F (4.21b)O " +1 cr Reo p net/r _y
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2. On the base of hemispherical surface:

Uslip V 2 O_ Re0pV T _x °_x nerly "_J +

1 7 1 1 t.z 1 lo_

7-1 o"Reo pT ne T/y o3y

Tslip=TW+_ 200 27 1 M** l.t _ 1 o_T- 1'+1 O" Reo p" _-x

(4.22a)

(4.22b)
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Section 5

DESCRIPTION OF NUMERICAL METHOD OF INTEGRATION

Here, a third-order accurate upwind biased scheme of numerical integration with the
provision to use a second-order accurate central-difference scheme at the grid points
adjoining the boundary is used. In the upwind-biased numerical scheme, the first-order
derivatives in the convective terms are differenced as follows:

i,./ 6-_y{2f(i'j+l)+3f(i'j)-6f(i'j-1)+ f(i'j-2)} ifq>O
(5.1 a)

ql_l =_A)Y {2f(i'j-1)+3f(i'j)-6f(i'j+l)+ f(i'j+2)}ifq<O (5.1b)
i,j

First order and second-order derivatives appearing in the viscous and heat conduc-

tion terms of the governing equations (4.20) to (4.22) and the metric coefficients ap-
pearing in the equations are differenced with a second-order accurate central-

difference approximation. At every grid point, information about the velocity component
with regard to its sign is evaluated and, depending on the sign, finite-difference ap-

proximation (5. la) or (5. lb) is used. We notice that the stencil in (5. la, b) involves in-
formation at four grid points. For q > 0, we use formula (5.1a). To use this result we

need information at one grid point at (i, j+l) ahead and two grid points at (i, j-]) and (i,
j-2) behind the grid point at (i, f) under consideration. Thus, in case q • 0 at a grid point
adjacent to the solid boundary, viz., j = 2, we need information at the grid points j = 1
and j = O. Information at j = O, inside the solid boundary is not available. Hence, un-

der the conditions described above, the upwind biased scheme fails to compute the
flow near the solid boundary. We used the central-difference scheme to compute the
flow at the grid point under consideration.

In the following, we have identified the conditions and the areas in the domain of
integration where computation of the flow by the upwind biased numerical scheme is

not possible. In the strips in Figs. 5.1a-5.1d marked with dotted lines in the domain of
integration, we have computed the flow by a second-order accurate central-difference
scheme of numerical integration, while the flow inside the rectangle formed by solid
lines is computed by the third-order accurate upwind biased numerical scheme of inte-
gration.
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Case1 u>0, v>0

ix

j=jj

i=3

j=jj-I

i=ii- i=ii

j=3

t......................................

j=l

Figure 5.1a: Domain of Integration with Upwind Biased Scheme for Case u > O, v > 0

Figure 5.1b:

Case 2 u<0, v<0

j=jj

j=jj-2

i---- =2 i._ii- 2

j=2

i=ii

j=l

Domain of Integration with Upwind Biased Scheme for Case u < O, v < 0

Case 3: u < 0, v > 0

J=Ji

j.< jj-2

=2 i=ii- 2 i=ii

j=3

...................................... -J :

j=l

Figure 5.1c: Domain of Integration with Upwind Biased Scheme for Case u < O, v > 0
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Case 4: u > O, v < 0

j=_

i=_j-2

i=3 i=ii- i=ii

j=3

t. ......................................

j=l

Figure 5.1d: Domain of Integration with Upwind Biased Scheme for Case u > O, v < 0

Pressure gradient terms in the governing equations are differenced in the manner
convective terms are differenced.

In the n°rmal m°mentum equati°n' pressure gradient term appears as (1 1_/neqy

while in the tangential momentum equation, pressure gradient term appears as

In the energy equation, work done by pressure forces is repre-
3x ne _Ty

Xne
In the central-difference scheme, pressure gradient terms are represented by

p(i,j+l)-p(i,j-1)
..,.

03, 2zXy

Op _ p( i + 1, j) - p( i - 1, j)

,gx 2zXx

In the upwind biased scheme, _-- in the normal momentum equation at a particular

grid point (i, ./') is differenced as per the sign of normal component of velocity (v) while

o_ and -_ appearing in the tangential momentum equation are differenced as per sign

of the tangential component of velocity (u). In the energy equation, -_ and ---_ are as-

sociated with the velocity components u or v. Hence, they are differenced as per sign
of (u) and (v). Thus, the contribution to the energy by the pressure forces is evaluated
in the following four cases:

Case 1" u > 1, v • 0

Case 2: u < 1, v < 0

35



F=_-r,,_-r- _--c _--_ RTR 249-01

Case 3: u < 1, v > 0

Case 4: u > 1, v < 0

and the analysis is incorporated in the main program.

Derivatives in the normal direction appearing in the surface slip and temperature

jump boundary conditions are replaced by the second-order accurate one-sided finite-
difference approximation:

igf = 4 f(i,j + 1)- f(i,j + 2)- 3 f(i,j)

oay 2Ay

while the derivative in the tangential direction appearing in the creeping term is re-

placed by

____.=f(i + l,j)- f(i- l,j)
o"x 2Ax

The computer code is so written that we can compute the entire flow in the wake

region by the second-order accurate central-difference scheme of numerical integra-

tion, or use a third order accurate upwind biased scheme in the rectangles bounded by

solid lines in Figs. 5.1a to 5.1d and a second order accurate central-difference scheme

along the dotted strips in Figs. 5.1 a to 5. ld.
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Section 6

GENERATION OF GRIDS ON THE AFTBODY

Aftbody may consist of sphere-cylinder (Fig. 6.1a) or a hemisphere, with a cylindri-
cal bay (Fig. 6.1b) (an AFE-type configuration).

r "-I" c

r =r B

Figure 6.1a: Sphere-Cylinder Configuration
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r = r¢

u

(r,z)

r = rB

Z

Figure 6.1b: Hemisphere with a Cylindrical Bay Configuration

In spherical coordinate system, the outer domain of integration is represented by

where

F_- o_ (6.1)
1+ e 2 cos 0

a2 = Nose radius of curvature

b 2
= --, b and a being the semi-minor and semi-major axis of the conic section

a

c
e2 = --, c being the focus of the conic section

a

Similarly, we can in general represent a body by the equation

where

Fa= al (6.2)
l+elCOSO

e 1 =

<

0 gives sphere

1 gives ellipse

1 gives parabola
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> 1 gives hyperbola

In the present computations, ra = _ = 1 and e] = 0.
TN

hemisphere.

In cylindrical coordinates,

and

_ = 3[a_ + 2a2e2z-(1-eg)*z 2

gB = lJa_ + 2afflz-(1-e_)*z 2

Thus, the body is a sphere or

(6.3)

(6.4)

The surface of a cylinder is represented by FB = constant = radius of the cylinder.

Several schemes of grid generation have been incorporated into the code. Provision
is made to generate uniformly spaced grids, reading grids from a file generated by
some other code and stretching grids as per the following logarithmic function:

1 [l+/_l-y] (6.5)
7/- l+:z°_L l+yj

where

where

a = 0 clusters the grids near the surface

a = 0.5 clusters the grids at either end of the radial line

15_ 0 reduces the size of the grid

The grid stretching function in Eq. (6.5) correlates the uniform grids in the computa-

tional (y, x)-plane with the nonuniform grids in the (rh _)-plane. The grids in the (11, _)-
plane are correlated with the grids in the physical (r, z)-plane through the following rela-
tion:

r = rB + rl(re-rB) (6.6)
z=_

This subroutine has the capability to stretch grids algebraically according to the law
similar to Eq. (6.5), in the tangential direction.

Vigorous attempts have been made to develop grids that contain the salient fea-
tures of the flowfield on the fore spherical portion and the aft cylindrical portion of the
flowfield. In the denser portion of the transitional regime, we expect a bow shock and a
shear layer near the surface on the forepart of the body and a bow shock diffusing in
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the wake, and a shear layer detaching from the corner of the hemispherical surface and
reattaching on the cylindrical surface, thus, entrapping a recirculating flow between the
body and shear layer. In order to resolve the flowfield adequately, we need to cluster
grids around the bow shock, shear layer, near the reattachment point and all around
the body surface (hemisphere, base and the cylindrical portion of the body).

A specially designed mathematical procedure based upon the logarithmic grid
stretching function and division of the flowfield into various segments has been devel-
oped to achieve the objectives stated above. A separate computer code for grid gen-
eration purposes has been developed. In Figs. 6.2 - 6.4, grid patterns are shown that
illustrate the capability of the code to cluster grids at the desired locations.

Salient features of the grid generation code are the following:

1. The domain of integration can be divided into any number of segments. In
Fig. 6-4, the forepart domain of integration is divided into two segments, sepa-
rated by the bow shock while the rearpart domain is divided into three segments,
which are separated by the bow shock and shear layer.

2. In order to avoid excessive variation in cell areas (Jacobian J _ 0 anywhere in
the flowfield) and to keep simplicity, grid points are allowed to move along the
radial lines only (not sideways).

3. The grids cluster around the shear layer which bends toward the cylindrical af-
terbody.

4. To avoid excessive clustering of grids in the first segment and sparseness of
grids in the second segment in the spherical portion of the body, a procedure is
developed that allows us to change the total number of nodal points along a ra-
dial line in each segment. Care is taken to see that the total number of grid
points along each radial line remains unchanged. Thus, in the first segment
between the shock and the body, the nodal points vary from 31 at 0 = 0 to 24 at

e = 90 deg, eliminating one grid point on the alternate radial line.

5. In the aft part of the body, the grid points in segment one between the shear
layer and the body are reduced from 16 at the base to 8 near the reattachment
point, eliminating one grid point on the successive radial lines and the grid points
in segment two between the shock wave and shear layer are correspondingly in-
creased. Grid points in segment three between the outer edge of the domain of
integration and the bow shock wave remain constant at the value given at the
shoulder.

6. The mathematical procedure is so developed that the grid points from the fore-
part and aft part merge smoothly at the radial line at the corner of the hemi-
sphere, thus avoiding the need of interpolating the values of the flow variables.

The computer code for generating grid points with the salient features stated above
enables us to generate grids that cluster around the important features of the flowfield.

Besides, we have capability to change the location of the shock and shear layer and if
need be, cluster grids around wake shocks that may possibly develop in the dense por-
tion of the atmosphere.
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The computed results on the grid system developed above will give us the flowfield
for adaptive gridding. In adaptive gridding, after extensive numerical computations, we
developed the following weight function [10]:

\dr Ji,j

where (ds) is the arc length of the profile of the flow variable, given by

i,j = 1+ --o3ri,j ' "f being the flow variable and ki, j the curvature of the profile at

the grid point (i, j) under consideration.

a2 f

l_,j = 2 3/2

[i,i iI
then

A =0.3
B = 0.3

Computations have been carried out for the case M.. = 10, 7 = 1.4,_r =.71, Tw = 0.2 and

for Reynolds number up to ReO = zero. Results of computations with adaptive gridding
and comparison of the results with the results of another independently developed
code, called Hypersonic Viscous Shock Layer (HVSL), are presented in Figs. 6.5, 6.6
and 6.7. It is seen that adaptive gridding increases the capability of the present proce-
dure to predict sharp shocks up to reasonably high Reynolds numbers.
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Figure 6.2: Grid Pattern on a Hemisphere with Cylindrical Afterbody: Clustering of
Grids Near the Body Surface and Near Shear Layer in the Wake
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7

.

3

Figure 6.3: Grid Pattern on a Hemisphere with Cylindrical Afterbody: Grids Cluster
around the Body Surface, Shear Layer and Bow Shock
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6

B

5 -

3

2

J

Figure 6.4: Grid Pattern on a Hemisphere with a Cylindrical Afterbody: Grids Cluster

around the Body Surface, Shear Layer and at the Reattachment Point on
the Afterbody and Bow Shock
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Section 7

DEVELOPMENT OF INITIAL CONDITIONS

For a given prescribed condition, converged solutions for the stagnation line flow-

field are obtained. Then, the stagnation line solution at e = 0 is extended up to ap-
proximately e = 48 deg by using the relations:

e
v07,e) = Vo(V)cose

T( ,O)=ro(rl)

p(rl,o)=po( )

p(r/,O) = pl(r/) + p,2(r/) sin 2 O

(7.1)

With the initial conditions in Eq. (7.1), the governing equations are iterated up to 250
iterations to give a semi-convergent solution on sphere up to 8 = 48 deg. The semi-

converged solution at the last but one radial line, viz., at e = 42 deg is extended up to
e--84 deg by considering the distribution of the flow variables at the grid points on
each radial line lying between e = 42 deg and 8 = 84 deg. With these initial conditions,

a semi-converged solution between e = 0 deg and e = 84 deg is obtained with an addi-

tional 200 iterations. Then, the solution at e = 78 deg is extended up to e = 108 deg
and a converged solution between e = 0 deg and e = 108 deg is obtained.

On the cylindrical portion with a sphere cylinder configuration, the distribution of the

flow variables at e = 90 deg is extended up to z = 10 A z and a semi-convergent solution

between z = 0 and z = 10 A z with the wake part code is obtained. Similar process is
repeated for every 10 steps in z-direction until a convergent solution on the cylindrical
part of the body is obtained.

With the hemisphere and a sting configuration for a generic AFE shape, solution at

the shoulder of hemisphere, viz., e = 90 deg, is extended between the shear layer and
outer edge of the domain of integration. Profiles of the flow variables between the

shear layer and the sting are represented by linear or quadratic expressions.
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Section 8

COMPUTATION PROCEDURE

8.1 Description of ASR Method

In the present investigation, Accelerated Successive Replacement (ASR) method as
suggested by Liberstein [11] has been used. It solves linear or nonlinear algebraic
equations arising in the finite difference approximation of the governing equations. The
method is good to solve elliptic partial differential equations or ordinary differential
equations with split boundary conditions, It has at least a quadratic convergence.

The Liberstein ASR method is a combination of Newton's method and Young's

method of Accelerated Successive Convergence.

Newton Method

Let

f(x) = 0 (8.1)

be the algebraic equation in the variable, x. Let x k be close to the root of Eq. (8.1).

...:(x"')=:(:)+(:+' =o 18.21
Idx

The right-hand side of Eq. (8.2) is approximately equivalent to the given equation, (8.1 .)
Eq. (8.2) can be written as

(8.3)

where

f, = df
dx

It is clear that for fast convergence, the initial guess should be reasonably good.

For functions of several variables, viz.,

._(xl,x2,-..xn) = O,i = 1,2,...n

and using Taylor's series expansion, we get

(8.4)

tl

::x k xk ..xk)+ _' ,' ix_ x k k_ i _+i_ 1' 2'" /_.,Jij_ 1' 2,'"Xn)'[Xj --X]k") =0,i=1,2,"

1=1

-°rl (8.5)
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where

The set of equations (8.5) can be solved by the inversion of the determinant proce-
dure which is impractical when the number of variables is large or by successive itera-

tion procedure which is inefficient. Thus, Newton's method is practical only when the
number of variables is small. However, it is applicable for linear and nonlinear alge-
braic equations.

Young's Accelerated Successive Replacement Method

Let

be the set of equations.

Then,

n

a_:ix.i= bi,i = 1,2,.-.,n (8.6)
j=l

x--,a k+lk b -z. ,  jxj -
aii L j=l j=i+l

represents (k+l)-th approximation of the roots of the Eq. (8.6).
acceleration or deceleration factor. Also, 0 < co< 2 and

co> 1, acceleration factor

< 1, deceleration factor

It is evident that Young's method is good for linear equations only.

Equation (8.7) can be written as

xik+l=x'+ Oglbi-_.aijx_+l-_aix_] 'i=l'2''''na,L .i=, .i=i

(8.7)

Here, co is called the

(8.8)

Liberstein [11] generalized it to a form where it can be used for nonlinear equations,
viz.,

when

f_/xk+_ xk+_ xk+_ x k ..xn_)1 , 2 ,"" i-l, i,"
X/TM = X/k --(O-l" ,,- / k+I k+l k

.hi(xi ,..-xi_, ,xi ,.-.x_) ,i = 1,2,.-.n (8.9)

0 <o_<2
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and

We have chosen the value of the acceleration factor, _ such that the percentage

change in the flow variable at every grid point is less than a prescribed number, _, viz.,

x/k =O'i <E

or

If

then

then

O'i<l

(0=0" i .

0_=1.

Special Features of the Method

In developing the flow from some arbitrarily prescribed conditions, sometimes
the changes in the flow variables become large, which leads to a divergent solu-
tion. The present method helps greatly to control these changes.

2. In each iteration, changes in each of the flow variables at each grid point are
controlled in such a way that all parts of the flowfield converge simultaneously.
In other words, it accelerates the convergent process of slowly converging fluid
and decelerates that of fastly converging fluid.

3. In certain cases, the control exercised by this procedure fails to bring the desired
changes. In such cases, we had to resort temporarily to manual changes in the
value of the acceleration factor.

4. Once the converged solution for one set of prescribed parameters is obtained,
the solution for another set of parameters is obtained through a series of compu-
tations involving small changes in the prescribed conditions.
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5. At each stage of the computation, boundary conditions are satisfied. The suc-
cessive iteration improves upon the flow structure at the inner grid points.

6. In view of the inherent characteristics of the method, it should work reasonably
well with the stiff equations which arise in fluid flow problems capturing shocks
and flows with chemical reactions.

7. The numerical accuracy of a solution depends upon the extent it satisfies the
governing equations. The magnitude of the residue gives an estimation of the
error. In the present method, the calculation of residue is carried out at each
grid point in the iteration as part of the solution procedure.

8. During the process of convergence, sometimes it was found that the error oscil-

lated about some mean value. The situation can be rectified by slightly changing
either one or all of the following:

a. Initial conditions

b. Outer domain of integration

c. Prescribed conditions

Main code is divided into the following three subroutines:

1. Stagpt

2. Forepart

3. Aftpart

Stagpt subroutine solves the local similar solutions of the Navier-Stokes equations
and gives the flowfield in the stagnation region.

Forepart subroutine solves the full Navier-Stokes equations in spherical coordinate
system and calculates the flow on the spherical portion of the body. Aftpart subroutine
solves the Navier-Stokes equations in cylindrical coordinate system and provides flow-
field on the cylindrical portion of the body. Each of the subroutines converges to the
desired level of accuracy before the computations on the next subroutine are initiated.

In the code, there is provision for overlaid grids where the information from spherical
system is passed to the cylindrical system.

The computer code so developed has the following salient features:

1. We can compute the flow up to any part of the body and automatically store the
information in a restart file for further use in the computation of the flowfield on
the remaining part of the body. For example, we can store the converged solu-
tion on the forepart of the body and use it to make extensive numerical experi-
ments for computing the flow on the aftpart of the body.

2. Solution for the successive values of the prescribed conditions can be obtained
by using the converged results from the previous set of prescribed conditions as
initial conditions.

3. Besides solving the problem on sphere-cylinder and hemisphere with a sting, the
present code in spherical cylindrical coordinate system enables us to solve the
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flowfield on a variety of configurations, viz., cone with a blunt nose with or with-
out a sting, biconic sections, etc.

In each of the subroutines various flow quantities are evaluated in the sequential or-
der stated below:

1. Normal component of velocity from the normal momentum equation. It is ob-
served that this equation converges slowly. In each global iteration, this equa-
tion is iterated twice.

2. Tangential component of velocity from the tangential momentum equation.

3. Temperature from the energy equation.

4. Density from the continuity equation. Continuity equation becomes singular at
the surface. Density at the surface is evaluated in the following manner:

"Pressure gradient in the radial direction, viz., (ap/ar), at the surface is evalu-

ated from the normal momentum equation, then the pressure at the wall is ob-
tained as follows:

and the density at the wall from the equation of state.

In some cases, we had to resort to linear extrapolation of density to the wall and
then evaluate wall pressure from the equation of state.

5. Pressure at the inner grid points is evaluated from the equation of state.

8.3 Criterion for Convergence

The following five types of error estimates were made at every 50th iteration:

1. Mean square root of the tangential component of velocity

2. Mean square root of normal component of velocity.

3. Mean square root of temperature

4. Mean square root of pressure

5. Maximum of the difference of the values of the tangential component of velocity
and temperature at every grid point in the flowfield at every 50 iterations.

The most stringent of the five criteria stated above was accepted as the criterion of
convergence. Besides, the residues of each of the governing equations at each grid
point were printed along with the converged results. By visual inspection, we satisfied
ourselves that these residues are reasonably small at each grid point in the flowfield.
This indicates that the computed results of the flow variables satisfy the governing
equations and the boundary condition.
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Section 9

DISCUSSION OF RESULTS

Extensive numerical computations have been carried out under conditions that can

be obtained in SR3 low-density tunnel at the Centre National de la Recherche Scientific
(CNRS) in France. The reasons for selecting these conditions for testing our code are

that (1) CNRS proposes to conduct experiments to understand the wake structure on a
70 degree blunt cone with a cylindrical bay on its base and (2) theoretical investigations
on the blunted cone using DSMC and the Navier-Stokes equations have already ap-
peared in the literature. The configuration of the our body is sphere-cylinder or hemi-
sphere with a cylindrical bay which simulates the generic shape of Aeroassisted Flight
Experiment Vehicle (AFE). Although the generic AFE shape is quite different from the
70 degree blunted cone adopted by the previous investigators, yet we found similarities
in the prediction of wake structure of AFE and blunted cone. Using the kinetic theory
formulation of viscosity, Moss et al. [6] calculated the prescribed conditions in the
CNRS tunnel in terms of the following dimensionless parameters:

./14== 20.2, Re** = 768, 7"= 1.4, Pr. No.= 0.71, Tw =.2726

Here, the Reynolds number is based on the diameter of the base of the blunted
cone.

Using the square-root viscosity law, we calculated the dimensionless parameters for
our calculations as follows:

M** = 20.19, Red = 84.48, 7"= 1.4, Pr. No.= 0.71, Tw =.2726

Computations have been carried out on sphere-cylinder and on hemisphere with a
cylindrical bay with radius equal to a quarter of the radius of the base of the hemi-
sphere. The purpose of computing the flow on sphere-cylinder is to understand the ef-
fect of dropping the cylindrical surface to quarter of the radius of base of hemisphere,
on the main flowfield. The computations have thus been divided into the following three
parts:

1. Computation of the flowfield on sphere-cylinder.

2. Computation of the flowfield on hemisphere with a cylindrical bay.

3. Comparison of the flowfield on sphere-cylinder and hemisphere with a cylindrical
bay or generic AFE configuration in the common region of flow.

Computations have been carried out using 16 x 71 grids on the spherical surface
and 31 x 71 grids on the cylindrical surface of sphere-cylinder body. For hemisphere
with a cylindrical bay or generic AFE configuration, 37 grid points were added along the
base of the hemisphere. Thus, for the generic AFE shape, there are 31 x 107 gridpoints
in the region over the cylindrical surface. As stated earlier, first the solution for the
stagnation region was made to converge and then the solution on the spherical portion
was made to converge and finally the solution in the wake region converged. In the
present report, only the results of the above mentioned case are presented. Other
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cases calculated by the present investigator are not reported mainly because they of-

fered no new insight into the nature of the flow on the spherical surface or in the wake
structure.

CASE (A) COMPUTATION OF THE FLOWFIELD ON SPHERE-CYLINDER.

In Figs. 9.1 and 9.2, temperature profiles at various locations on sphere-cylinder
configuration are drawn. From these graphs, the following observations can be made:

1. Temperature profiles indicate that a relatively strong shock from the forepart of
the body diffuses progressively as it moves downstream of the body.

2. In the present procedure, a specially designed mathematical procedure is ap-
plied to obtain numerical solutions of the full Navier-Stokes equations along the
stagnation line [1,2]. The solution along the stagnation line so obtained provide
one of the boundary conditions to integrate the full Navier-Stokes equations over
the surface of the body. Special efforts were made to see that this solution along
the stagnation line merges smoothly with the solution over the rest of the surface
of sphere.

3. A big advantage of using spherical polar coordinate system is that the junction of

the sphere with cylinder viz., e = 90 degrees or z - 0.0 is not a singular point in
that the normal at the junction is well defined. It is not so when the body oriented
coordinate system is used. In body oriented coordinate system, there are infinite
number of normals as we pass over the juncture point from the spherical side to
cylindrical side. As such, it becomes reasonably difficult to obtain smoothly
varying solution around the junction point. In the present investigation, no such
problem is encountered as is evident from the graphs in Figs. 9.1 tO 9.7. Tem-
perature, tangential component of velocity, pressure and density profiles show
smooth changes as flow passes over the junction point.

4. Under the prescribed conditions, there does not appear to be any inviscid zone

on the spherical surface. A thick viscous layer near the surface merges smoothly
with a relatively thick bow shock. In the merged layer, there is almost a continu-
ous increase of temperature from the surface right up to the compressive side of
the shockwave. However, from the stagnation point up to the shoulder, the shock

strength decreases and consequently the maximum in temperature profile (Figs.
9.;1 and 9.2) decreases continuously.

Beyond the shoulder and on the cylindrical portion, there seems to be significant
expansion of the fluid which lowers the temperature level in the main body of the
merged layer. There is a slight increase of temperature in the viscous layer near the
cylinder body and a sharp drop of temperature across the shock wave. In between the
shock wave and viscous layer, there is an inviscid zone whose extent grows with the
distance downstream the cylindrical body.

In Figs. 9.3 and 9.4, profiles for tangential component of velocity are drawn at vari-
ous locations on the spherical surface. We find that as e varies from 0.0 tO 90 degrees,

the tangential component of velocity _ changes its values from zero to unity. As
U==
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such, the shock strength is not perceptible in the profiles drawn in the fore part of the
spherical surface. However, the increment in shock strength is quite evident as we ap-

proach the fluid at 6 = 90 degrees. Beyond e = 90 degrees, due to expansion in the
main body of the fluid, the fluid velocity decreases, the shock diffuses and the shock

strength decreases.

In Figs. 9.5 and 9.6, pressure profiles are drawn at various locations on the sphere-
cylinder surface. On the fore part of the spherical surface, there is a significant rise in
pressure across the shock followed by a slight compression in the viscous layer under-
neath the shock wave. As we move downstream, the expansion of flow in the viscous
layer reduces the pressure level in the viscous layer and diminishes the shock strength
in pressure profiles. We further notice that, on the spherical portion, the pressure con-
tinuously rises from the surface up to the shock. As such, the boundary layer approxi-
mation, viz., the gradient of pressure normal to the surface is negligible, is not valid
under the prescribed rarefied conditions. The pressure levels are reasonably low on
the cylindrical portion of the body and as expected the shock strength decreases.

In Figs. 9.7 and 9.8, density profiles at selected locations on the spherical and cylin-
drical surfaces are drawn. We notice that along the line of symmetry, the fluid suffers
compression across the shock as well as in the viscous layer. The density at the stag-
nation point is much larger than the density across the shock wave. As such, the pres-

ence of the shock in the density profile at e = 0.0 is not so evident. As we move down
stream, the shock strength decreases and it moves away from the surface, allowing
expansion of the flow to take place in the viscous layer. This process reduces the level
of density in the viscous layer, so much so that the density behind the shock wave be-
comes larger than the density in the viscous layer. Thus, the formation of the shock
becomes evident in the density profiles..

In Figs. 9.9 and 9.10, graphs are drawn to show the variation of heat transfer and
pressure coefficients on the spherical and cylindrical surfaces of sphere-cylinder con-

figuration. We observe that CH near 8 = 0.0 and at e = 90 degrees are not smoothly

merging with the corresponding values downstream, and there are slight fluctuations in

the values of CH on the cylindrical surface. In our view, these fluctuations are spurious

and can be removed by further numerical experimentation with respect to the size of
grids. Overall values are not going to change.

CASE (B): COMPUTATION OF THE FLOWFIELD ON HEMISPHERE WITH A
CYLINDRICAL BAY OR GENERIC AFE CONFIGURATION

In the wake region, density of the fluid is pretty low, usually less than 10 percent of
the free stream density. So, it became quite difficult to estimate the slip velocity on the
base of the hemisphere from the computations.

We found from Fig. 13 of Ref. [8] that the slip velocity on the base of the blunted
cone and on cylindrical bay is in any case very low probably due to the extremely slow
motion of the fluid in the base region. For the time being, slip velocity on the base of
the hemisphere is replaced with the no slip velocity. However, the slip velocity on the
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spherical portion and on the cylindrical portion of the generic AFE shape is retained
without the creeping term.

In Figs. 9.11 to 9.20, a brief description of the nature of the wake is presented. De-
scription of the flow on the spherical surface and in the main body of the flow is not very
different from the description of the flow on sphere-cylinder presented in case (A)
above.

From Figs. 9.11 and 9.20, we find that there is no separation of the flow in the wake

region under the prescribed conditions. Numerous numerical experiments with different
grid sizes and initial conditions were carried out to see whether under any other condi-
tion separation bubble is possible. None of these efforts succeeded to catch separation
bubble in the wake. There is no evidence of a separation shock or a distinct wake
shock under these rarefied conditions. Under the same prescribed conditions as stated

above, Moss, Mitcheltree, Wilmoth and Dogra [6] also found that there is no separa-
tion of the fluid in the wake region of the blunted cone. The results in Ref. [6] confirm
our findings.

From Fig. 9.11 and 9.12, we find that the wake region is heated due to the presence
of Knudsen layer and the viscous effects near the surface of the cylindrical bay. Figs.
9.13 and 9.14 show that. the fluid is greatly decelerated in the wake region. Figs. 9.15
and 9.16 indicate that the pressure level in the wake region is extremely low. Similar
conclusion is derived from Fig. 9.17 where density profiles at selected locations on the
cylindrical bay are drawn. Fig. 9.17 clearly indicates that the density in the wake region
under the prescribed conditions are very low, generally, less than 10 percent of the
free stream value of the density. In Fig. 9.18, surface slip velocity and temperature
jump conditions are plotted against the distances on the surface of the generic AFE
body. It is found that in the wake region, slip velocity and temperature increase quite
significantly. In Figs. 9.19 and 9.20, surface quantities, viz., heat transfer, skin-friction
and pressure coefficients, are drawn against the distances on the generic AFE body. It

is found that all the surface quantities i.e. CH, C.f and Cp are reasonably small on the
cylindrical cargo bay of the AFE body. We may thus conclude the following :

"UNDER THE PRESCRIBED CONDITIONS, THE WAKE OF A GENERIC AFE
BODY CONTAINS A SLOW MOVING, HIGH TEMPERATURE, LOW DENSITY AND
CONSEQUENTLY LOW PRESSURE FLUID."

These conclusion are in conformity with the conclusion derived earlier in Ref. [10]

CASE (C) COMPARISON OF THE FLOWFIELD ON SPHERE-CYLINDER AND
HEMISPHERE WITH A CYLINDRICAL BAY OR A GENERIC AFE CONFIGURATION
IN THE COMMON REGION OF FLOW

In Figs 9.21 to 9.24, comparison of certain flow quantities and surface quantities on
sphere-cylinder and on a generic AFE body is made with a view to understand the ef-
fect of wake structure on the main flowfield. In Figs. 9.21 and 9.22, temperature and
density profiles at certain selected locations on the cylindrical surfaces are compared.
From the graphs, we find that the wake cools slightly and reduces the density in the
main flowfield. The effect is realized more near the shear layer than near the shock
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wave. The location of the shock wave is unaffected. Figs. 9.23 and 9.24 show that the
heat transfer and pressure levels on the cylindrical portion of the generic AFE are
greatly reduced.
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Section 10

CONCLUSIONS

Extensive numerical computations have been carried out for a number of prescribed
conditions, but for the sake of brevity, the results of computations for SR3 tunnel condi-
tions of CNRS, Meudon, France, are reported here. Computations have been carried
out on a cylindrical body with a spherical nose (also called sphere-cylinder body) and
on a hemisphere with a cylindrical bay with radius equal to a quarter of radius of the
base of hemisphere, to simulate a generic AFE configuration. Comparison of the re-
suits on sphere-cylinder and on the generic AFE body help us to understand the rare-
faction effects and the effect of the wake flow on the main flowfield. It is found that un-

der rarefied conditions, wake flow defined as the flow between the shear layer and the
bay has little influence on the main flow between the shear layer and the shock wave.
Comparison of our results with the DSMC data from NASA LaRC indicates general
agreement about the nature of wake, but our results differ quantitatively with the DSMC
results. At the present moment, the results from the CNRS tunnel are not available. As

such, a quantitative comparison of the present results with the experimental data is not
possible.

In general, it is found that under the prescribed conditions, wake is a slowly moving,
high temperature, low density and low pressure fluid.
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